第405节
??正是小牛总结出的牛二定律。 ??众所周知。 ??小牛第一定律告诉我们“一个物体在不受力或者受到的合外力为0的时候会保持静止或者匀速直线运动状态”,那么如果合外力不为0呢? ??小牛第二定律就接着说了: ??如果合外力f不为零,那么物体就会有一个加速度a,它们之间的关系就由f=ma来定量描述。 ??也就是说。 ??如果我们知道一个物体的质量m,只要你能分析出它受到的合外力f。 ??那么我们就可以根据小牛第二定律f=ma,计算出它的加速度a。 ??知道加速度,就知道它接下来要怎么动了。 ??随后徐云又在函数图像的某段上随意取了两个点。 ??一个写上a,一个写上b,二者的弧度标注为了△l。 ??写完后将它朝小麦面前一推: ??“麦克斯韦同学,你来分析一下这段区间收到的合外力试试?不考虑重力。” ??小麦闻言一愣,指了指自己,诧异道: ??“我?” ??徐云点了点头,心中微微一叹。 ??今天他要做的事情对于法拉第、对于电磁学界、或者说大点对于整个人类的历史进程,都会有着极大的促进意义。 ??但唯独对于小麦和赫兹二人而言,却未必是个好事。 ??因为这代表着有些原本属于他们的贡献被抹去了。 ??就像某天一个月薪4000的打工人忽然知道自己原本可能成为亿万富翁,结果有个重生者以‘人类共同发展’为由把属于你的机会给夺走了,你会作何感想? ??平心而论,有些不公平。 ??所以在徐云的内心深处,他对小麦是有些愧疚感的。 ??往后怎么补偿小麦另说,总之在眼下这个过程里,他能做的便是让小麦尽可能的进入这些大佬的视线里。 ??当然了。 ??小麦并不知道徐云内心的想法,此时他正拿着钢笔,刷刷刷的在纸上写着受力分析: ??“罗峰先生说不考虑重力,那么,就只要分析波段ab两端的张力t就行了。” ??“波段ab受到a点朝左下方的张力t和b点朝右上方的张力t,彼此对等。” ??“但波段的区域是弯曲的,因此两个t的方向并不相同。” ??“假设a点处张力的方向跟横轴夹角为θ,b点跟横轴的夹角就明显不一样了,记为θ+Δθ。” ??“因为波段上的点在波动时是上下运动,所以只需要考虑张力t在上下方向上的分量。” ??“b点处向上的张力为t·sin(θ+Δθ),a点向下的张力为t·sinθ,那么,整个ab段在竖直方向上受到的合力就等于这两个力相减……” ??很快。 ??小麦在纸上写下了一个公式: ??f=t·sin(θ+Δθ)-t·sinθ。 ??徐云满意的点了点头,又说道: ??“那么波的质量是多少呢?” ??“波的质量?” ??这一次。 ??小麦的眉头微微皱了起来。 ??如果假设波段单位长度的质量为μ,那么长度为Δl的波段的质量显然就是μ·Δl。 ??但是,因为徐云所取的是非常小的一段区间。 ??假设a点的横坐标为x,b点的横坐标为x+Δx。 ??也就是说绳子ab在横坐标的投影长度为Δx。 ??那么当所取的绳长非常短,波动非常小的时候,则可以近似用Δx代替Δl。 ??这样绳子的质量就可以表示为…… ??μ·Δx ??与此同时。 ??一旁的基尔霍夫忽然想到了什么,瞳孔微微一缩,用有些干涩的英文说道: ??“等等……合外力和质量都已经确定了,如果再求出加速度……” ??听到基尔霍夫这番话。 ??原本就不怎么喧闹的教室,忽然又静上了几分。 ??对啊。 ??不知不觉中,徐云已经推导出了合外力和质量! ??如果再推导出加速度…… ??那么不就可以以牛二的形式,表达出波在经典体系下的方程了吗? ??想到这里。 ??几位大佬纷纷拿出纸笔,尝试性的计算起了最后的加速度。 ??说起加速度,首先就要说说它的概念: ??这个是用来衡量速度变化快慢的量。 ??加速度嘛,肯定是速度加得越快,加速度的值就越大。 ??比如我们经常可以听到的“我要加速啦”等等。 ??假如一辆车第1秒的速度是2m/s,第2秒的速度是4m/s。 ??那么它的加速度就是用速度的差(4-2=2)除以时间差(2-1=1),结果就是2m/s^2。 ??再来回想一下,一辆车的速度是怎么求出来的? ??当然是用距离的差来除以时间差得出的数值。 ??比如一辆车第1秒钟距离起点20米,第2秒钟距离起点50米。 ??那么它的速度就是用距离的差(50-20=30)除以时间差(2-1=1),结果就是30m/s。 ??不知道大家从这两个例子里发现了什么没有? ??没错! ??用距离的差除以时间差就得到了速度,再用速度的差除以时间差就得到了加速度,这两个过程都是除以时间差。 ??那么…… ??如果把这两个过程合到一块呢? ??那是不是就可以说: ??距离的差除以一次时间差,再除以一次时间差就可以得到加速度? ??当然了。 ??这只是一种思路,严格意义上来说,这样表述并不是很准确,但是可以很方便的让大家理解这个思想。 ??如果把距离看作关于时间的函数,那么对这个函数求一次导数: ??就是上面的距离差除以时间差,只不过趋于无穷小,就得到了速度的函数。 ??对速度的函数再求一次导数,就得到了加速度的表示。 ??鲜为人同学们懂不懂不知道,反正在场的这些大佬们很快便都想到了这一点。 ??是的。 ??之前所列的函数f(x,t)描述的内容,就是波段上某一点在不同时间t的位置! ??所以只要对对f(x,t)求两次关于时间的导数,自然就得到了这点的加速度a。 ??因为函数f是关于x和t两个变量的函数,所以只能对时间的偏导af/at,再求一次偏导数就加个2上去。 ??因此很快。 ??包括法拉第在内,所有大佬们都先后写下了一个数值: ??加速度a=a^2f/at^2。 ??而将这个数值与之前的合力与质量相结合,那么一个新的表达式便出现了: ??f=t·sin(θ+Δθ)-t·sinθ=μ·Δxa^2f/at^2。 ??随后威廉·韦伯认真看了眼这个表达式,眉头微微皱了些许: ??“罗峰同学,这就是最终的表达式吗?我似乎感觉好像还能化简?” ??徐云点了点头: ??“当然可以。” ??f=t·sin(θ+Δθ)-t·sinθ=μ·Δxaa^2f/at^2。 ??这是一个最原始的方程组,内容不太清晰,方程左边的东西看着太麻烦了。 ??因此还需要对它进行一番改造。 ??至于改造的思路在哪儿呢? ??当然是sinθ了。 ??只见徐云拿起笔,在纸上画了个直角三角形。