第1252节
??这个一个近现代非常常见的技术,雏形最早可以追溯到公元之前。 ??大概在公元前500年左右,东西方同时近乎出现了一种检测手段: ??布料商人会将一滴含有混合色素的溶液滴在一块布或一片纸上,通过观察溶液展开产生的同心圆环来分析染料与色素。 ??这种手段的本质,其实就是现代色谱学的基本原理。 ??接着在1903年。 ??毛熊植物学家tswett在华沙自然科学学会生物学会会议上,发表了题为“一种新型吸附现象及其在生化分析上的应用”的论文。 ??论文提出了应用吸附原理分离植物色素的新方法,这一工作标志着现代色谱学的开始。 ??当时他将碳酸钙装入竖直的玻璃柱中,从顶端倒入植物色素的石油醚浸取液。 ??接着进一步采用溶剂冲洗,使溶质在柱的不同部位形成了明显的色带。 ??他通过这种方式公开展示了采用色谱法提纯的棺物色素溶液,以及色谱图显示着彩色环带的柱管。 ??tswett将这种方法命名为色谱,管内填充物被称之为固定相,冲洗剂被称之为流动相。 ??1941年。 ??martin等采用水分饱和的硅胶为固定相,以含有乙醇的氯仿为流动相,分离乙酰基氨基酸的工作是分配色谱的首次应用——然后他们便提出了奠定色谱技术发展的色谱塔板理论。 ??如今20年过去。 ??色谱技术已经在液固色谱方向取得了相对成熟的成果,并且普及度很高,连隔壁的金姓邻居都掌握了相关技术。 ??去年海对面的科学家还研制成功了细粒度高效填充色谱柱,大大提髙了液相色谱的分离能力。 ??而且很有意思的是。 ??在某些爱国华侨的牵线搭桥下。 ??这款拥有细粒度高效填充色谱柱的分配色谱仪,在今年年初便被顺利运回了国内。 ??什么? ??你问牵线搭桥的对象是谁? ??这还用问? ??当然是兔子们的老熟人屈润普同志……咳咳,屈润普先生了。 ??总而言之。 ??有了这么一套设备协助,亚硝解液的色谱分离应该是不会有什么问题的。 ??随后于永忠顿了顿,继续说道: ??“至于第二步的醛胺缩合反应……如果我没理解错韩立同志的意思的话……” ??“这应该就是带醛基的化合物与带氨基的化合物,通过醛基与亚氨基缩合成希夫碱而进行共价交联的过程吧?” ??徐云很爽利的点了点头。 ??化学基团这个概念被提出的时间很早很早,早到1837的时候便被李比希提和维勒出来了。 ??如今什么氨基、氰基、醛基之类的概念,已经是化学大学生的必修内容了。 ??以于永忠的能力,这么快理解徐云的意思倒也不足为奇。 ??当然了。 ??徐云的介绍也就到此为止了,更深入的肽链、交联键以及胶原结构徐云并没有多提。 ??毕竟这些概念现在还没问世,解释起来非常的复杂且没意义——反正cl20的合成过程只要涉及到醛胺缩合就行。 ??而另一边。 ??得到了徐云的肯定后,于永忠便拿起了纸和笔,继续解释起了自己的理解: ??“既然是共价交联过程,那么醛胺缩合反应的机理理论上便可有两种情况。” ??“一种是ch2c6h5[no+]n(no)ch2c6h5→nohn+chc6h5+h2o→c6h5chonh[no+]nno……” ??“另一种则是nchc6h5hn 2o4n+o→nochc6h5nno+c6h5cho……” ??“上述形成的tadnsiw与硝化剂作用时,进行亚硝胺和叔乙酰胺的硝解反应,生成hniw亚硝胺的硝解机理与三级胺的硝解机理相类似……” ??“接着胺与醛、酮的脱水反应,首先生成一甲醇胺,然后在酸或碱催化下进一步脱水可以生成亚胺……” ??“但由于硝基胺含有两个不同反应活性的氮,所以从反应方程来看,硝基胺与甲醛的反应有两种途径,一种是以硝基胺上的n1作为亲核中心……” ??看着洋洋洒洒在纸上写着推导过程的于永忠,徐云的心中也忍不住冒出了一股感慨。 ??真不愧是兔子们在炸药领域的顶尖大佬啊…… ??自己只不过将制备工艺以及分子结构简单的提点了一下,于永忠居然就能想到如此深入的层次。 ??要知道。 ??这年头醛胺缩合反应,还是化学领域中一个战争迷雾很厚重的区域。 ??毕竟它涉及到了很多复杂的微观反应,目前的理论和技术都远未深及,整个概念被完全摸透还要好几年呢。 ??例如说碳碳键,又例如α-氢结合等等…… ??虽然徐云对于现场的诸多前辈都相当尊敬,但不得不承认的是,于永忠的能力确实要比王原等人高一些。 ??如今于永忠没能成为某个课题组的负责人,很大部分原因还是在于他的年龄问题——如今他才满27岁呢。 ??221基地内虽然没有多少论资排辈的腌臜事儿,但大家潜意识里项目负责人的年龄都不能太小。 ??俗话说得好。 ??嘴上没毛,办事不牢嘛,这种观念在后世也很常见。 ??例如大家去医院看医生或者给孩子选老师,基本上很少人会去选年轻人——经验和年龄在大多数时候确实是对等的。 ??所以一般来说。 ??除非是像徐云这种靠着一次次表现说服了所有人的少见个例,否则大多数人都很难在20多岁就直接成为某个项目的负责人——尤其是炸药研制这种关键课题上。 ??不过以吴永忠的能力,出头应该也都是迟早的事儿了。 ??想到这里。 ??徐云便将心绪又拉回了现实,准备等于永忠推导完毕后将cl20这话题收个话尾。 ??毕竟该说的信息他差不多都说完了,剩下的主要是王原于永忠他们研发组的任务,他也帮不上太多的忙。 ??从于永忠的推导过程来看,他应该要不了多久就能结束。 ??然而就在徐云等待之际。 ??做着纸面推导的于永忠忽然笔尖一顿,嘴里发出了一声轻咦: ??“咦?” ??此时观察室内众人的注意力都在于永忠身上,眼见他面露异色,老郭便忍不住问道: ??“永忠同志,出什么事了吗?” ??“……” ??于永忠沉默片刻,将钢笔的末端抵在自己的下巴上,轻轻摇起了头: ??“是出了点状况,不过不是什么推导环节上的问题,只是我个人感觉有些地方好像有些奇怪……” ??徐云顿时一怔。 ??奇怪? ??这是啥意思? ??不过徐云还来不及开口,于永忠便又重新抽出了一张纸,自顾自的写了起来: ??“韩立同志,按照你的说法,cl20这种炸药应该是标准的三维结构,对吧?” ??徐云点了点头。 ??这是他很早之前就提过的信息,也是cl20与前三代炸药最本质的区别。 ??于永忠见状又刷刷写道: ??“三维结构,也就是它的结构式肯定不同于我们现有的四元环,应该是未被定义的五元环或者六元环。” ??“那么分子中的6个硝基相对于五元环和六元环可有不同的空间取向,晶格的堆积方式和单位晶胞内的分子数也不同,所以可能的晶型应该是……” ??“24种。” ??唰—— ??于永忠很快在算纸上写下了几个构型。 ??环化反应这个概念要在1973年才会被r.b.伍德沃德提出,但三元环和四元环的雏形在50年代就已经出现了。 ??只是目前化学界对于三元环和四元环的环了解相对有限,认知最深的物质便是环丙烷——而这玩意儿在环化结构中只能算是入门中的入门。 ??不过另一方面。 ??虽然对于三四元环的认知不深。 ??但这并不妨碍于永忠做出cl20是五元环甚至六元环结构的猜测。 ??这属于逻辑性的问题——因为四元环是撑不起立体结构的。 ??就像曲率引擎使用的燃料必然不可能是煤一样,只有五元环才可能支撑起立体的三维构型。 ??当然了。 ??上面这句话是以这个时代的认知说的。 ??如果按后世的知识体系来看,四元环并不都是平面结构——因为键角张力并不是唯一的张力来源。 ??例如环丁烷和环戊烷就不是平面结构,而是是信封式和半椅式构型,此处便不多赘述了。 ??视线再回归现实。 ??“韩顾问,我有个可能有点天马行空的想法……” ??随后于永忠将这张算纸推到了徐云面前,斟酌着对他说道: ??“韩顾问,你看,从结构式上来说,cl20显然是一种高密度高氮含量的化合物。”